44 research outputs found

    Atmospheric boundary layer height estimation by different methods: application to lidar measurements

    Get PDF
    Comunicación presentada en: 2012 European Aerosol Conference (EAC-2012), B-WG01S2P30, celebrada del 2 al 7 de septiembre de 2012 en Granada.This work is supported by the Spanish Ministry for Research and Innovation (MICINN) under grant CGL2011-24891 (project AMISOC)

    Aerosol scenario effect in elastic lidar data inversion for lidar ratio estimation: a case study over a coastal dust-influenced area

    Get PDF
    Comunicación presentada en: V Reunión Española de Ciencia y Tecnología de Aerosoles – RECTA 2011 celebrada del 27 al 29 de junio de 2011 en CIEMAT, Madrid

    Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements

    Get PDF
    The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00 UTC yields a mean mass loading of 0.6±0.1 g m'2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7 km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10-0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008 g m'2, around 3 % of that found for the dust event. Pollen particles are detected up to 1.5 km in height from 10:00 UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003 g m'2, representing around 2 % of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2 m2 g'1 are found for coarse and fine dust particles, 4.5±1.4 m2 g'1 is derived for smoke and 2.4±0.5 m2 g'1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8 m2 g'1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission

    Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval

    Get PDF
    Simultaneous observations of a polarized micro-pulse lidar (P-MPL) system and two reference European Aerosol Research Lidar Network lidars running at the Leipzig site Germany, 51.4g gN, 12.4g gE; 125gmga.s.l.) were performed during a comprehensive 2-month field intercomparison campaign in summer 2019. An experimental assessment regarding both the overlap (OVP) correction of the P-MPL signal profiles and the volume linear depolarization ratio (VLDR) analysis, together with its impact on the retrieval of the aerosol optical properties, is achieved; the experimental procedure used is also described. The optimal lidar-specific OVP function is experimentally determined, highlighting that the one delivered by the P-MPL manufacturer cannot be used long. Among the OVP functions examined, the averaged function between those obtained from the comparison of the P-MPL observations with those of the other two reference lidars seems to be the best proxy at both near- and far-field ranges. In addition, the impact of the OVP function on the accuracy of the retrieved profiles of the total particle backscatter coefficient (PBC) and the particle linear depolarization ratio (PLDR) is examined. The VLDR profile is obtained and compared with that derived from the reference lidar, showing that it needs to be corrected by a small offset value with good accuracy. Once P-MPL measurements are optimally (OVP, VLDR) corrected, both the PBC and PLDR profiles can be accurately derived and are in good agreement with reference aerosol retrievals. Overall, as a systematic requirement for lidar systems, an adequate OVP function determination and VLDR testing analysis needs to be performed on a regular basis to correct the P-MPL measurements in order to derive suitable aerosol products. A dust event observed in Leipzig in June 2019 is used for illustration

    Saharan Air Layer (SAL) over Tenerife: summertime statistic analysis from lidar measurements

    Get PDF
    Comunicación presentada en: 2012 European Aerosol Conference (EAC-2012), B-WG01S2P30, celebrada del 2 al 7 de septiembre de 2012 en Granada.This work is supported by the Spanish Ministry for Research and Innovation (MICINN) under grant CGL2011-24891 (project AMISOC)

    Saharan and arabian dust aerosols: a comparative case study of lidar ratio

    Get PDF
    El volumen 119 de 2016 de la revista EPJ Web of Conferences recoge las ponencias del 27th International Laser Radar Conference (ILRC 27)This work presents a first comparative study of the Lidar Ratio (LR) values obtained for dust particles in two singular dust-influenced regions: the Canary Islands (Spain, close to the African coast in the North Atlantic Ocean), frequently affected by Saharan dust intrusions, and the Kuwait area (Arabian Peninsula) as usually influenced by Arabian dust storms. Synergetic lidar and sun-photometry measurements are carried out in two stations located in these particular regions for that purpose. Several dusty cases were observed during 2014 in both stations and, just for illustration, two specific dusty case studies have been selected and analyzed to be shown in this work. In general, mean LR values of 54 sr and 40 sr were obtained in these studies cases for Saharan and Arabian dust particles, respectively. Indeed, these results are in agreement with other studies performed for dust particles arriving from similar desert areas. In particular, the disparity found in Saharan and Arabian dust LR values can be based on the singular composition of the suspended dust aerosols over each station. These results can be useful for CALIPSO extinction retrievals, where a single LR value (40 sr) is assumed for pure dust particles independently on the dust source region.This work has been supported by both the Spanish Ministerio de Economía y Competitividad (MINECO) under grant CGL2011-24891 (AMISOC project) and the Kuwait Foundation for the Advancement of Sciences under project 2011- 1401-01

    Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak-Part 1 : Short-wave dust direct radiative effect

    Get PDF
    Acknowledgements. The authors thank the images provided from the NMMB/BSC-Dust model, operated by the Barcelona Supercomputing Centre (BSC) (https: //ess.bsc.es/bsc-dust-daily-forecast; last access: 30 January 2020). The authors also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the pictures from the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov; last access: 28 April 2020) used in this work. The MPLNET project is funded by the NASA Radiation Sciences Program and Earth Observing System. The MPLNET staff at NASA GSFC is warmly acknowledged for the continuous help in keeping the MPL systems and the data analysis up to date. We particularly thank Judd Welton for providing the MPL unit in place at the Barcelona site. Financial support. This research was funded by the Spanish Ministry of Science, Innovation and Universities (CGL2017-90884- REDT and PRX18/00137 “Salvador de Madariaga” programme), the Spanish Ministry of Science and Innovation (PID2019- 104205GB-C21 and PID2019-103886RB-I00), the H2020 programme from the European Union (ACTRIS, GA no. 654109, 778349, and 871115), and the Unity of Excellence “María de Maeztu“ (MDM-2016-0600) financed by the Spanish State Re- search Agency (AEI). MPZ has been partially funded by the AEI (Unity of Excellence “María de Maeztu” - Centro de Astrobiología (CSIC-INTA), MDM-2017-0737). MALC is supported by the INTA predoctoral contract programme.Peer reviewedPublisher PD

    Lidar ratio derived for pure dust aerosols: multi-year micro pulse lidar observations in a Saharan dust-influenced region

    Get PDF
    El volumen 119 de 2016 de la revista EPJ Web of Conferences recoge las ponencias del 27th International Laser Radar Conference (ILRC 27)A seasonal distribution of the Lidar Ratio (LR, extinction-to-backscattering coefficient ratio) for pure Saharan dust particles has been achieved. Simultaneous MPLNET/Micro Pulse lidar measurements in synergy with AERONET sun-photometer data were collected in the Tenerife area, a Saharan dust-influenced region, from June 2007 to November 2009. Dusty cases were mostly observed in summertime (71.4 % of total dusty cases). No differences were found among the LR values derived for spring, summertime and autumn times (a rather consistent seasonally averaged LR value of 57 sr is found). In wintertime, however, a higher mean LR is derived (65 sr), associated likely with a potential contamination from fine biomass burning particles coming from Sahel area during wintertime deforestation fires period. Results, obtained from a free-tropospheric pristine station (AEMET/Izaña Observatory) under Saharan dust intrusion occurrence, provide a more realistic perspective about LR values to be used in elastic lidar-derived AOD inversion for Saharan pure dust particles, and hence in improving CALIPSO AOD retrievals.This work has been supported by the Spanish Ministerio de Economía y Competitividad (MINECO) under grant CGL2011-24891 (AMISOC project)

    Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    Get PDF
    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16e2.8 mm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidarderived profiles.This work is supported by the Spanish Ministerio de Economía y Competitividad (MINECO) under grants CGL2011-24891 and CGL2014-55230-R

    MicroPulse Lidar and Ceilometer inter-comparison during Saharan dust intrusions over the Canary Islands

    Get PDF
    Comunicación presentada en: V Reunión Española de Ciencia y Tecnología de Aerosoles – RECTA 2011 celebrada del 27 al 29 de junio de 2011 en CIEMAT, Madrid.This study presents an inter-comparison between a Vaisala CL51 ceilometer and a Micro Pulse Lidar (MPL) of both the Boundary Layer (BL) and the Saharan Air Layer (SAL) top heights during Saharan dust events from January to April 2011. This inter-comparison was performed at the Santa Cruz de Tenerife Observatory in Tenerife, Canary Islands, within the Marine Boundary Layer. From January to April the Saharan dust intrusions usually occur at lower altitudes within the BL. One of the main goals of this study is to determine whether the CL51 ceilometer is capable to detect mineral dust within the SAL. To our knowledge, this is the first time this kind of study is attempted on a site close to Saharan dust sources
    corecore